Abstract

Non-metal element doping on photocatalysts demonstrates a wide range of disadvantages. Hence metal embedding on nanomaterials is considered to enhance photocatalytic efficiency. In this study, we employed silver nano particle embedding on C-TiO2 photocatalyst to improve its phtotocatytic degradation efficiency of organic water pollutant such as methyl orange. Modified sol-gel methods based on self-assembly technique was used to prepare the nanoformulations. The synthesized nanoparticles were characterized by X-Ray diffraction (XRD), Fourier transforms infrared (FT-IR), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). Compared to non-silver formulation (C-TiO2), silver embedded nanomaterial (C-TiO2/Ag) displayed an increased shift in the light absorption towards visible spectrum. A low photoluminescence (PL) intensity by 1 wt% C-TiO2/Ag indicated improved photocatalytic efficiency. Further, higher degradation of organic dye methyl orange confirmed that 1 wt% C-TiO2/Ag exhibited the best photodegradation rate over its non Ag embedded C-TiO2. Embedding of silver on C-TiO2 extends optical absorption edge of C-TiO2 to more visible spectrum and inhibits electron-hole recombination resulting in enhanced photocatalytic activity. Photocatalytic degradation on methyl orange organic pollutant was considerably improved indicating its potential use in water treatment applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call