Abstract

The BiOCl0.75I0.25/g-C3N4 nanosheet (BCI-CN) was successfully immobilized on polyolefin polyester fiber (PPF) through the hydrothermal method. The novel immobilized BiOCl0.75I0.25/g-C3N4 nanocomposites (BCI-CN-PPF) were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy EDS, X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy (UV–vis DRS) to confirm that BCI-CN was successfully immobilized on PPF with abundant oxygen vacancies reserved. Under simulated solar light irradiation, 100 % of bisphenol A (BPA) with an initial concentration of 10 mg·L−1 was degraded by BCI-CN-PPF (0.2 g·L−1 of BCI-CN immobilized) after 60 min. A similar photocatalytic efficiency of BPA was obtained in the presence of effluent organic matter (EfOM). The photocatalytic degradation of BPA was not affected by EfOM <5 mg-C/L. In comparison, the photocatalytic performance was considerably inhibited by EfOM with a concentration of 10 mg-C/L. Furthermore, photogenerated holes and superoxide radicals predominated in the photocatalytic degradation processes of BPA. The total organic carbon (TOC) removal efficiencies of BPA and EfOM were 75.2 % and 50 % in the BCI-CN-PPF catalytic system. The BPA removal efficiency of 94.9 % was still achieved in the eighth cycle of repeated use. This study provides a promising immobilized nanocomposite with high photocatalytic activity and excellent recyclability and reusability for practical application in wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call