Abstract

Background: Vancomycin-resistant Enterococcus faecalis and multi-drug-resistant (MDR) Acinetobacter baumannii are rising contributors to spinal fusion and fracture-associated infections (FAI), respectively. These MDR bacteria can form protective biofilms, complicating traditional antibiotic treatment. This study explores the effects of the antibiotic-independent antimicrobial silver carboxylate (AgCar)-doped coating on the adherence sand proliferation of these pathogens on orthopedic implant materials utilized in spinal fusion and orthopedic trauma fixation. Methods: Multi-drug-resistant Acinetobacter baumannii and vancomycin-resistant Enterococcus faecalis were inoculated on five common implant materials: cobalt chromium, titanium, titanium alloy, polyether ether ketone, and stainless steel. Dose response curves were generated to assess antimicrobial potency. Scanning electron microscopy and confocal laser scanning microscopy were utilized to characterize and quantify growth and adherence on each material. Results: The optimal AgCar concentration was a 95% titanium dioxide (TiO2)-5% polydimethylsiloxane (PDMS) matrix combined with 10 × silver carboxylate, which inhibited bacterial proliferation by 89.40% (p = 0.001) for MDR Acinetobacter baumannii and 84.02% (p = 0.001) for vancomycin-resistant Enterococcus faecalis compared with uncoated implants. A 95% TiO2-5% PDMS matrix combined with 10 × AgCar was equally effective at inhibiting bacterial proliferation across all implant materials for MDR Acinetobacter baumannii (p = 0.19) and vancomycin-resistant Enterococcus faecalis (p = 0.07). A 95% TiO2-5% PDMS matrix with 10 × AgCar is effective at decreasing bacterial adherence of both MDR Acinetobacter baumannii and vancomycin-resistant Enterococcus faecalis on implant materials. Conclusions: Application of this antibiotic-independent coating for surgery in which these implant materials might be used may prevent adherence, biofilm formation, spinal infections, and FAI by MDR Acinetobacter baumannii and vancomycin-resistant Enterococcus faecalis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call