Abstract

The color changes associated with the aggregation of metal nanoparticles has led to the development of colorimetric-based assays for a variety of target species. We have examined both silver- and gold-based nanoparticles in order to establish whether either metal exhibits optimal characteristics for bioassay development. These silver and gold nanoparticles have been stabilized with a self-assembled monolayer of a mannose derivative (2-mercaptoethyl alpha-d-mannopyranoside) with the aim of inducing aggregation by exploiting the well-known interaction between mannose and the lectin Concanavalin A (Con A). Both metal glyconanoparticles were determined to be ca. 16 nm in diameter (using TEM measurements). Aggregation was observed on addition of Con A to both silver and gold nanoparticles resulting in a shift in the surface plasmon absorption band and a consequent color change of the solution, which was monitored using UV-visible spectrophotometry. Mannose-stabilized silver nanoparticles at a concentration of 3 nM provide an assay for Con A with the largest linear range (between 0.08 and 0.26 microM). Additionally, the kinetic rate of aggregation of the silver-nanoparticle-based bioassay was significantly greater than that of the gold-nanoparticle system. However, in terms of sensitivity, the mannose-stabilized gold-nanoparticle-based assay was optimum with a limit of detection of 0.04 microM Con A, as compared with a value of 0.1 microM obtained for the mannose-stabilized silver nanoparticles. Additionally, a lactose derivative (11-mercapto-3,6,9-trioxaundecyl beta-D-lactoside) was used to stabilize gold nanoparticles to induce aggregation upon addition of the galactose specific lectin Ricinus communis agglutinin (RCA(120)). To examine the specificity of the bioassay, lactose-stabilized gold nanoparticles were mixed with a solution of mannose-stabilized silver nanoparticles to give an aggregation assay capable of detecting two different lectins. When either Con A or RCA(120) was added to the mixed glyconanoparticles, selective recognition of the respective natural ligand was shown by aggregation of a single metal nanoparticle. Centrifugation and removal of the aggregated species enabled further bioassay measurements using the second glyconanoparticle system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.