Abstract

Zero-valent copper and silver metals (Ms) nanoparticles (NPs) supported on carboxymethylcellulose (CMC) were synthesized for treating Enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4), a major cause of diarrhea in post-weaned pigs. The antibacterial properties of Cu0/CMC and Ag0/CMC were assessed on infected porcine intestinal enterocyte IPEC-J2, an in vitro model mimicking the small intestine. The lower average particle size (218 nm) and polydispersity index [PDI]: 0.25) for Ag0/CMC, when compared with those of Cu0/CMC (367 nm and PDI 0.96), were explained by stronger Ag0/CMC interactions. The minimal inhibitory concentration (MIC) and half inhibitory concentration (IC50) of Ag0/CMC were lower in both bacteria and IPEC-J2 cells than those of Cu0/CMC, confirming that silver nanoparticles are more bactericidal than copper counterparts. IPEC-J2, less sensitive in MNP/CMC treatment, was used to further investigate the infective process by ETEC:F4. The IC50 of MNP/CMC increased significantly when infected IPEC-J2 cells and ETEC were co-treated, showing an inhibition of the cytotoxicity effect of ETEC:F4 infection and protection of treated IPEC-J2. Thus, it appears that metal insertion in CMC induces an inhibiting effect on ETEC:F4 growth and that MNP/CMC dispersion governs the enhancement of this effect. These results open promising prospects for metal-loaded biopolymers for preventing and treating swine diarrhea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.