Abstract
Electrochemically assisted deposition of Ca(OH)2 (Portlandite) coatings on titanium surfaces has been proven as a promising method to provide the substrate with a most desirable combination of significant bacterial growth reduction on one hand and good biocompatibility on the other. Due to the rapid in vivo transformation of Ca(OH)2 to hydroxyapatite, the antimicrobial activity will be an ephemeral property of the coating when implanted into the human body. In this study, the ability to reduce bacterial growth of such portlandite coatings was significantly enhanced by an ionic modification with copper and silver ions. Antibacterial tests revealed a noticeably elevated reduction of bacterial growth, especially for copper and even at a relatively low copper content of about 0.3 wt.%. In addition, the cytocompatibility, a crucial prerequisite for potential in vivo biocompatibility, of the copper-modified coating was comparable to pure calcium hydroxide coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of materials science. Materials in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.