Abstract
The conversion of propargylic alcohols and carbon dioxide (CO2) into fine chemicals suffers from issues of harsh reaction conditions and difficult catalyst recovery. To achieve efficient CO2 activation at low energy consumption, a silver-anchored porous aromatic framework catalyst Ag@PAF-DAB with high active phase density and CO2 adsorption capacity was proposed. Since Ag@PAF-DAB has the dual functions of CO2 capture and conversion, propargylic alcohols were completely converted into α-alkylidene cyclic carbonate or α‑hydroxy ketone as high value-added product under atmospheric pressure (CO2, 0.1 MPa) and low silver equivalent (0.5 mol%). Notably, Ag@PAF-DAB exhibited broad substrate diversity, high stability, and excellent reusability. By applying FTIR and GC, the key to green synthetic route of α‑hydroxy ketone was confirmed to lie in the further hydration of α-alkylidene cyclic carbonate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have