Abstract

This study evaluates the effect of silver alloying, stoichiometry, and deposition temperature of wide‐gap (Ag,Cu)GaSe2(ACGS) absorber films for solar cell applications. Devices using a standard CdS buffer exhibit a strong anticorrelation between the open‐circuit voltage (VOC) and short‐circuit current density (JSC), withVOCdecreasing andJSCincreasing toward stoichiometric absorber composition. Increasing the ACGS deposition temperature leads to larger grains and improvedJSC, whileVOCis not affected. By adding more silver to the absorber (maximum tested [Ag]/([Ag]+[Cu]) [AAC] = 0.4), the widening of the space charge region (SCR) significantly enhances carrier collection. Experimental quantum efficiency spectra can be accurately simulated when assuming a very low diffusion length and perfect collection in the SCR. The highest efficiency of 8.3% (without antireflection coating [ARC]) is reached for an absorber with AAC = 0.4 grown at 600 °C. Replacing CdS by a (Zn,Sn)O buffer with lower electron affinity strongly mitigates interface recombination. Moreover, theVOC–JSCanticorrelation is not evident anymore and the highest efficiency of 11.2% (11.6% w/ARC,VOC = 985 mV,JSC = 18.6 mA cm−2, fill factor = 61.0%) is reached for a close‐stoichiometric ACGS solar cell with AAC = 0.4 processed at 650 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.