Abstract

A series of polymer–clay nanocomposite (PCN) materials that consist of siloxane-modified epoxy resin and inorganic nanolayers of montmorillonite (MMT) clay has been prepared through a thermal ring opening polymerization using 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane as a curing agent. These PCN materials at low clay concentration in the form of coating on cold-rolled steel (CRS) were found to be much superior in corrosion protection over those of pure epoxy resin when tested for performance in a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current, and impedance spectroscopy in 5 wt.% aqueous NaCl electrolyte. The as-prepared materials were characterized by infrared spectroscopy, wide-angle X-ray diffraction, and transmission electron microscopy. After measurements, we found advanced protection against corrosion on CRS coupon compared to bulk epoxy resin. Molecular (e.g., O2, N2, and H2O) permeability of epoxy resin–clay nanocomposite membranes was found to be lower than that of bulk epoxy resin along with the loading of nanoclay based on the studies of gas and vapor permeability analysis. Moreover, the epoxy resin–clay nanocomposite materials have significant advantages over standard epoxy resins such as lower water absorption, lower cure shrinkage, moderate glass transition temperature (Tg), and higher tensile strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call