Abstract
ABSTRACTA series of segmented poly(urethane‐urea) block copolymers were synthesized with varying proportions of polydimethylsiloxane diols in combination with polytetramethylene ether glycol (PTMG) using 4,4'‐methylenediphenyl diisocyanate followed by chain extension with a (50:50 mol %) mixture of 4,4'‐methylene‐bis(3‐chloro‐2,6‐diethylaniline) (M‐CDEA) and 1,4‐butanediol (BD). The molecular structures of polydimethylsiloxane urethane‐ureas were characterized by ATR‐FTIR and 1H‐NMR spectroscopic techniques. Distribution of siloxane domain and its influence on surface roughness were investigated by scanning electron microscopy (SEM) and atomic forced microscopy (AFM), respectively. The mechanical and thermal properties of the elastomers were studied by thermogravimetric analysis, dynamical mechanical thermal analysis, and tensile measurement. The results showed that by incorporation of polydimethylsiloxane diol and M‐CDEA chain extender in polyurethane formulation, some improvements in thermal stability, fire resistance and surface hydrophilicity were achieved. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1743–1751, 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.