Abstract
In this work, a thin, flexible and mechanically stable polymer conducting material (Silk-Ion Jelly) was developed though application of Ion Jelly on to silk fabrics. Ion Jelly was prepared through jellification of a room temperature ionic liquid, 1-butyl-3-methyl-imidazolium dicyanamide ([bmim][dca]) using gelatin and water and applied to silk fabrics using two different processes: impregnation and in-situ. Various parameters influencing ionic conductivity such as Ion Jelly composition (ratio of [bmim][dca], water and gelatin) and incorporation as well as the type of application process were thoroughly investigated. It was observed that the Ion Jelly compositions containing lower gelatin and water ratio as well as application through in-situ process at high temperature (200 °C) led to considerable improvement in conductivity, mainly due to increased [bmim][dca] concentration, structural flexibility and reduced silk crystallinity. Silk-Ion Jelly prepared using optimized conditions showed excellent mechanical stability and possessed high room temperature conductivity (2.9 × 10−3 S. cm−1), similar to [bmim][dca], and therefore, this novel ion conducting material may find potential applications in electrochemical devices due to its eco-friendly preparation route using biomaterials and green solvents. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.