Abstract

Biosourced carboxymethyl cellulose polymer electrolytes have been studied for potential application in electrochemical devices. The carboxymethyl cellulose was obtained by reacting cellulose derived from kenaf fibre with monochloroacetic acid. Films of the biosourced polymer electrolytes were prepared by solution-casting technique using ammonium acetate salt and (1-butyl)trimethyl ammonium bis(trifluoromethylsulfonyl)imide ionic liquid as charge carrier contributor and plasticizer, respectively. The shift of peak of carboxyl stretching in the Fourier transform infrared spectra confirmed the interactions between the host biosourced polymer with the ionic liquid. Scanning electron microscopy indicated that the incorporation of ionic liquid changed the morphology of the electrolyte films. The room temperature conductivity determined using impedance spectroscopic technique for the film without ionic liquid was 6.31 × 10−4 S cm−1 while the highest conductivity of 2.18 × 10−3 S cm−1 was achieved by the film integrated with 20 wt% (1-butyl)trimethylammonium bis(trifluoromethanesulfonyl) imide. This proved that the incorporation of ionic liquid into the salted system improved the conductivity. The improvement in conductivity was due to an increase in ion mobility. The results of linear sweep voltammetry showed that the electrolyte was electrochemically stable up to 3.07 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.