Abstract

Functional wound dressing has provided new challenges for researchers who focus on burn to improve skin graft quality, reduce scarring, and develop a pluristratified dermal or epidermal construct of a burn wound. This study aimed to investigate the effect of a silk fibroin/gelatin (SF/GT) electrospun nanofibrous dressing loaded with astragaloside IV (AS) on deep partial-thickness burn wound. AS-loaded SF/GT-blended nanofibrous dressing was prepared by electrospinning nanotechnology. The optimal ratio (25:75) of silk fibroin to gelatin was further optimized by evaluating ATR-FTIR characteristics, mechanical properties, porosity, swelling rate, degradation, and release profile of the AS-loaded SF/GT nanofibrous dressing. In contrast to the blank control, the AS-loaded SF/GT nanofibrous dressing promoted cell adhesion and proliferation with good biocompatibility in vitro (p<0.01). This dressing also accelerated wound healing and inhibited scar formation in vivo by stimulating wound closure (p<0.05), increasing angiogenesis, regulating newly formed types of collagen, and improving collagen organization. These results showed that SF/GT nanofibrous dressing is a promising topical drug delivery system. Furthermore, AS-functionalized SF/GT nanofibrous dressing is an excellent topical therapeutic that could be applied to promote healing and elicit anti-scar effects on partial-thickness burn wound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call