Abstract

Despite much progress in cancer therapy, conventional chemotherapy can cause poor biodistribution and adverse side-effects on healthy cells. Currently, various strategies are being developed for an effective chemotherapy delivery system. Silk fibroin (SF) is a natural protein used in a wide range of biomedical applications including cancer therapy due to its biocompatibility, biodegradability, and unique mechanical properties. In this study, SF-coated liposomes (SF-LPs) were prepared as a biomimetic drug carrier. Physicochemical properties of SF-LPs were characterized by Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering, zeta potential measurement, and transmission electron microscopy (TEM). In vitro release of SF-LPs loaded with doxorubicin (DOX-SF-LPs) was evaluated over 21 days. Anticancer activity of DOX-SF-LPs was determined against MCF-7 and MDA-MB231 cells using the MTT assay. SF-LPs containing 1% SF exhibited favorable characteristics as a drug carrier. SF coating modified the kinetics of drug release and reduced the cytotoxic effect against L929 fibroblasts as compared to the uncoated liposomes containing cationic lipid. DOX-SF-LPs showed anticancer activity against breast cancer cells after 48 h or 72 h at 20 μM of DOX. This approach provides a potential platform of long-term release that combines biocompatible SF and phospholipids for cancer therapy, achieving efficient drug delivery and reducing side-effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.