Abstract

Silicon nanowire (SiNW) arrays are demonstrated as a suitable platform for the preconcentration of trace nitroaromatic compounds and subsequent desorption via Joule heating of the array. Arrays are fabricated from Si wafers containing an epitaxially grown layer of low conductivity intrinsic Si sandwiched between layers of high conductivity p-type Si. Passage of current through the nanowires results in nanowire temperatures in excess of 200 °C during heating of the arrays as verified by using the temperature-dependent shift of the Si Raman band at ˜520 cm−1. Analyte vapor preconcentration and partial separation is achieved on the array at analyte concentrations nearly two orders-of-magnitude below saturated vapor concentrations at room temperature. The effects of desorption carrier gas flow rate and temperature on the ability to preconcentrate and resolve the analytes of interest are determined. 2,6-dinitrotoluene (2,6-DNT) and 2,4-dinitrotoluene (2,4-DNT) were detected at nominal vapor concentrations of 800 pptv with a 1 min sample time (1.1 ng nominal mass load) and trinitrotoluene (TNT) was detected at a nominal vapor concentration of 65 pptv with a 10 min sample time (1.1 ng nominal mass load).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.