Abstract
Biomarker detection and bulk refractive index sensing are important across multiple industries ranging from early medical diagnosis to chemical process quality control. The bulky size, high cost, and complex architecture of existing refractive index and biomarker sensing technologies limit their use to highly skilled environments like hospitals, large food processing plants, and research labs. Here, we demonstrate a compact and inexpensive refractive index sensor based on resonant dielectric photonic nanoantenna arrays or metasurfaces. These dielectric resonances support Mie dipole and asymmetric resonances that shift with changes in their external environment. A single-wavelength transmission measurement in a portable (<250 in.3), low-cost (<$4000) sensor shows sensitivity to 1.9 × 10–6 change in the fluid refractive index without the use of a spectrometer or other complex optics. Our sensor assembly allows for measurements using multiple metasurfaces with identical resonances or varying resonance types for enhanced diagnostics on the same chip. Furthermore, a 10 kDa culture filtrate peptide CFP-10, a marker for human tuberculosis, is detected with our sensor with 10 pM resolution. This system has the potential to enable facile, fast, and highly sensitive measurements with adequate limits of detection for personalized biomedical diagnoses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.