Abstract

The formation of silicon nanocrystals in SiO2 layers implanted with Si ions was investigated by Raman scattering, X-ray photoelectron spectroscopy, and photoluminescence. The excess Si concentration was varied between 3 and 14 at. %. It was found that Si clusters are formed immediately after implantation. As the temperature of the subsequent annealing was raised, the segregation of Si accompanied by the formation of Si-Si4 bonds was enhanced but the scattering by clusters was reduced. This effect is attributed to the transformation of loosely packed clusters into compact, separate-phase nanoscale Si precipitates, with the Raman peak observed at 490 cm−1 being related to surface scattering. The process of Si segregation was completed at 1000°C. Nevertheless, characteristic nanocrystal photoluminescence was observed only after annealing at 1100°C. Simultaneously, scattering in the range 495–520 cm−1, typical of nanocrystals, appeared; however, the “surface-related” peak at 490 cm−1 persisted. It is argued that nanocrystals are composed of an inside region and a surface layer, which is responsible for their increased formation temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.