Abstract

The effect of heat treatments at 1100°C on an ion-beam synthesis of Si nanocrystals in SiO2 layers is studied. The ion-implanted samples are subjected either to a single heat treatment after the total ion dose (1017 cm−2 has been implanted, two heat treatments (a heat treatment after the ion implantation of each half of the total dose), or three heat treatments (a heat treatment after each third of the dose). The total duration of the heat treatments is maintained at 2 h. It is found that the intermediate heat treatments lead to a shift of the Raman spectrum of the nanocrystals to longer wavelengths and to a shift of the photoluminescence spectrum to shorter wavelengths. Study using electron microscopy shows that the size of the nanoprecipitates decreases, which is accompanied by the disappearance of the characteristic features of crystallinity; however, the features of photoluminescence remain characteristic of the nanocrystals. The experimental data obtained are accounted for by a preferential drain of Si atoms to newly formed clusters, which is consistent with the results of a corresponding numerical simulation. It is believed that small nanocrystals make the main contribution to photoluminescence, whereas the Raman scattering and electron microscopy are more sensitive to larger nanocrystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.