Abstract

AbstractThe dielectric metasurface hologram promises higher efficiencies due to lower absorption than its plasmonic counterpart. However, it has only been used, up to now, for controlling linear‐polarization photons to form single‐plane holographic images in the near‐infrared region. Here, we report a transmission‐type metahologram achieving images in three colors, free from high‐order diffraction and twin‐image issues, with 8‐level modulation of geometric phase by controlling photon spin via precisely patterned Si nanostructures with varying orientations. The resulting real and virtual holographic images with spin dependence of incident photons natively enable the spin degeneracy removal of light, leading to a metahologram‐enabled spin Hall effect of light. Low‐absorption dielectrics also enable us to create holograms for short‐wavelength light down to 480 nm, thus spanning the three primary colors. It possesses the potential for compact color‐display chips using mature semiconductor processes, and holds significant advantages over previous metaholograms operating at longer wavelengths. image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call