Abstract

Silicon modulators based on the carrier depletion mechanism are extensively used in recent years for high-speed data transmission. Lateral PN junctions are the most common electro-optical phase shifters for silicon Mach-Zehnder modulators (MZMs) due to its ease of fabrication. They have a relatively high DC VπLπ of around 2.5 V.cm in the Oband. An alternative approach is to design and optimize vertical PN junctions for lower DC VπLπ, which is currently lacking in the literature for silicon MZMs that operates using carrier depletion mechanism in the O-band. In this work, we look into the design and optimization of silicon phase shifters based on vertical PN junctions for high-modulationefficiency with VπLπ ≤ 1 V.cm, while meeting the stringent low loss budget of ≤ ∼1 dB/mm for data communication in the O-band. This is achieved by varying the offsets of the vertical PN junction with respect to different doping concentrations (2e17/cm3 – 3e18/cm3 ) near the depletion region. Different types of doping schemes are explored and optimized. Our optimized vertical PN junction designs are predicted to give low DC VπLπ of 0.26–0.5 V.cm for low DC reverse bias of ≥ –2V and low propagation loss of ≤ ∼1dB/mm, resulting in α.VπLπ = 1.7 for the best designs, which to the best of our knowledge, is the lowest α.VπLπ at the O-band to date. Electrical and optical modeling are based on our in-house proprietary software that is able to perform both optical and electrical simulations without loss of data fidelity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.