Abstract

This paper reviews our research on the silicon light-emitting diode antifuse, a tiny source featuring a full white-light spectrum. Optical and electrical properties of the device are discussed together with the modelling of the spectral emission, explaining the emitting mechanism of the device. An estimation of the antifuse's internal power conversion efficiency reveals a reasonable value of at least 10−5. Photochemical effect on two types of photoresists were carried out showing a clear impact of the emitted photons in the near ultraviolet range. The two integrated device prototypes, namely the opto-isolator which communicates optically and the microscale opto-fluidic device which senses the difference in the refractive indices of liquids, indicate that the light-emitting diode antifuse has the potential for sensor and actuator applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.