Abstract

Although silicon (Si) transporters-mediated uptake of arsenic (As) by rice roots is well-documented, how Si influences As behaviors in rhizosphere and rhizoplane before As entry into roots is still unclear. Here we used three rice genotypes to explore the effect of silicic acid on the root uptake of As as impacted by chemical and microbial changes in bulk soil, rhizosphere, rhizoplane and endosphere. The results show that exogenous Si decreased root arsenite [As(III)] absorption, which was attributed to Si-mediated alteration of traits in chemical plaque and microbial films on the rhizoplane. The pH, Eh, As and Fe in the porewater were not influenced by Si. However, Si enhanced the concentrations of As(III) (16–49%) and Fe (15–80%) in the rhizoplane while decreasing As(III) concentrations in the roots (19–39%) and grains (22–29%). The diversities and richness of microbes in soils and plants were not affected by Si. The microbial connections were negatively influenced by Si in bulk and rhizosphere soils, but positively impacted in rhizoplane and endosphere. Both the abundance of reducing microbes, Anaeromyxobacter and Geobacteraceae, and the level of As(III) and Fe in rhizoplane were significantly increased by the addition of Si, thereby restraining As(III) from uptake into roots. This study provides new insights into the microbial mechanisms of Si-mediated As uptake by rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call