Abstract

For many decades, wood silicification has been viewed as a relatively simple process of permineralization that occurs when silica dissolved in groundwater precipitates to fill vacant spaces within the porous tissue. The presence of specific silica minerals is commonly ascribed to diagenetic changes. The possibility of rapid silicification is inferred from evidence from modern hot springs. Extensive examination of silicified wood from worldwide localities spanning long geologic time suggests that these generalizations are not dependable. Instead, wood silicification may occur via multiple pathways, permineralization being relatively rare. Mineralization commonly involves silica precipitation in successive episodes, where changes in the geochemical environment cause various polymorphs to coexist in a single specimen. Diagenetic changes may later change the mineral composition, but for many specimens diagenesis is not the dominant process that controls mineral distribution. Rates of silicification are primarily related to dissolved silica levels and permeability of sediment that encloses buried wood. Rapid silica deposition takes place on wood in modern hot springs, but these occurrences have dissimilar physical and chemical conditions compared to those that exist in most geologic environments. The times required for silicification are variable, and cannot be described by any generalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call