Abstract

The bulk and surface structures of calcium and strontium disilicides are investigated by computational methods using density functional theory. The investigated structures are R6, R3 and P1-CaSi2 and P1-SrSi2. The investigated properties are the cleavage energy at the silicene sheet, buckling of the bulk and surface silicene layers, charge transfer from calcium to silicon, band structure of bulk and surface-terminated structures and adsorption energies on H atoms and H2 molecules on the silicene-terminated surface of the R3 phase. The cleavage energy at the silicene surface is low in all cases. Structures P1-CaSi2 and R3-CaSi2 contain silicene sheets with different coordination to Ca, while R6-CaSi2 contains both types of the sheets. It is shown that the properties of the two types of silicene-like sheets in R6-CaSi2 are similar to those of the corresponding sheets in P1-CaSi2 and R3-CaSi2, and the thermodynamically stable R6 phase is a good candidate for experimental investigation of silicene-terminated surface in calcium disilicide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call