Abstract

1-Vinyl-3-octadecylimidazolium bromide ionic liquid [C18VIm]Br was prepared and used for the modification of mercaptopropyl-functionalized silica (Si-MPS) through surface radical chain-transfer addition. The synthesized octadecylimidazolium-modified silica (SiImC18) was characterized by thermogravimetric analysis (TGA), infrared spectroscopy (IR), 13C NMR and 29Si NMR spectroscopy and used as an extraction phase for the automated 96-blade solid phase microextraction (SPME) system with thin-film geometry using polyacrylonitrile (PAN) glue. The new proposed extraction phase was applied for extraction of aminoacids from grape pulp, and LC–MS–MS method was developed for separation of model compounds. Extraction efficiency, reusability, linearity, limit of detection, limit of quantitation and matrix effect were evaluated. The whole process of sample preparation for the proposed method requires 270min for 96 samples simultaneously (60min preconditioning, 90min extraction, 60min desorption and 60min for carryover step) using 96-blade SPME system.Inter-blade and intra-blade reproducibility were in the respective ranges of 5–13 and 3–10% relative standard deviation (RSD) for all model compounds. Limits of detection and quantitation of the proposed SPME-LC–MS/MS system for analysis of analytes were found to range from 0.1 to 1.0 and 0.5 to 3.0μgL−1, respectively. Standard addition calibration was applied for quantitative analysis of aminoacids from grape juice and the results were validated with solvent extraction (SE) technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.