Abstract

Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex.

Highlights

  • Direct skeletal attachment (DSA) is a method used in prosthetics in which a metallic implant is attached directly to the patient’s bone at the residual limb; concerns regarding DSA include infection and skin irritation [1–3]

  • Different approaches have been taken towards re-designing DSA devices for improving patient outcomes; these approaches usually involve modification of the surface by sandblasting the device surface, titanium plasma-spraying, plasma-spraying with hydroxyapatite (HA), coating the implant with a titanium dioxide (TiO2) layer through anodic oxidation, and applying a coating made from bioactive glass [4–6]

  • Other compositions have been deficient in zinc [9–11], an antibacterial component [13–15] which aids the healing process by inhibiting the growth of caries-related bacteria such as Streptococcus mutans [16]

Read more

Summary

Introduction

Direct skeletal attachment (DSA) is a method used in prosthetics in which a metallic implant is attached directly to the patient’s bone at the residual limb; concerns regarding DSA include infection and skin irritation [1–3]. Laugier [39] showed that indentation crack geometry in glasses and ceramics were different and claimed that Lawn’s model required some modifications when used for the evaluation of ceramic toughness, and developed a new model that described the indentation cracking in ceramics more realistically In this study, both glass series will be evaluated to determine their coefficient of thermal expansion (CTE) and its effect on the residual stresses and strains post-coating, their critical strain energy release rate in mode I (opening) of the coating/substrate system through double-cantilever beam (DCB) specimens and of the bulk glass through Vickers indentation, and their bulk hardness

Coefficient of Thermal Expansion (CTE)
Glass Preparation
Discs Preparation
Coating Preparation
Coefficient of Thermal Expansion (CTE) Measurement by Linear Dilatometry
Residual Stress and Strain Analysis
Vickers Hardness
Bulk Mode I Critical Strain Energy Release Rate Using Vickers Indentation
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.