Abstract

To tackle the current drawbacks with metallic implants used in direct skeletal attachment, novel bioactive glasses are considered as implant coatings in order to reduce bacterial infections and promote bone cell growth. Silica-based and borate-based glasses, with increasing amounts of titanium dioxide at the expense of either silica (for the silica-based glasses) or borate (for the borate-based glasses), respectively, were synthesized and characterized to determine the parameters that define a glass capable of inhibiting bacterial growth, stimulating cell proliferation and offering mechanical stability when enameled into a surgical alloy. The effect of substituting the glass backbone with titanium dioxide, in both glass series, is also investigated with respect to its effect on both biocompatibility and mechanical properties of the resultant glass/implant constructs. Borate-based glasses exhibited greater processing windows compared to the silica-based glasses, making them more desirable for coating applications. They also exhibited superior performance in terms of their in vitro bioactivity and biocompatibility, over their silica-based counterparts, due to their higher solubility and greater ability to inhibit S. epidermidis and E. coli bacteria. Specifically, glass BRT0 (control borate-based glass, with no titanium incorporated) exhibited an inhibition zone against S. epidermidis of 17.5 mm and a mass loss of 40% after 30 days, with BRT3 (borate-based glass, with 15 mol% titanium incorporated) exhibiting an inhibition zone against S. epidermidis of 7.6 mm and a mass loss of 34% after 30 days. Furthermore, borate-based glasses with greater titanium dioxide contents exhibited superior mechanical properties (e.g. bulk hardness, and critical strain energy release rates), which could be attributed to their more closely matched coefficients of thermal expansion with the titanium alloy substrate, Ti6Al4V, to which they were adhered. The critical strain energy release rates in mode I for the silica-based coating/substrate system ranged from 6.2 J/m2 (for SRT0, control silica-based glass with no titanium) to 12.08 J/m2 (for SRT3), whereas for the borate-based systems they ranged from 10.86 J/m2 (for BRT0) to 18.5 J/m2 (for BRT3), with the increase for the borate-based glasses being attributed to the presence of compressive residual stresses in the coating after application.

Highlights

  • Socket attachment consists of wrapping the prosthetic limb around the residual limb, with the prosthesis serving as the socket for the residual limb, with quadrilateral and ischial containment sockets being the most noteworthy technologies [7]

  • The implant is permanently connected to the bone, resulting in high force and moment interaction between the prosthesis and the body [8]

  • This chapter outlines the characterization of two novel bioactive glass series, a silicabased glass series and a borate-based glass series that contain increasing amounts of titanium oxide (TiO2)

Read more

Summary

Introduction

We evaluate the characteristics of the two glass series, a silica-based and a borate-based, in terms of their degradative behavior (including solubility and ion release profiles), cytotoxicity, and in vitro antibacterial capabilities. For the latter studies, inhibition zones will be measured in media containing Staphylococcus epidermidis and Escherichia coli. Since biocompatibility and bioactivity are required for the proposed coatings to battle the drawbacks from DSA, the work in this chapter does not consider glasses BRT2 and SRT2, alongside SRT4 and BRT4, which were already removed from further evaluation. Both glass series will be evaluated to determine their coefficient of thermal expansion (CTE) and its effect on the residual stresses and strains post-coating, their critical strain energy release rate in mode I (opening) of the coating/substrate system through double-cantilever beam (DCB) specimens and of the bulk glass through Vickers indentation, and their bulk hardness

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.