Abstract
A hybrid silica–liposome nanocapsule system containing insulin has been developed and the encapsulation, protection and release properties are evaluated. The formulation strategy is based on using insulin-loaded 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and cholesterol liposomes as a template for the deposition of inert silica nanoparticles. The influence of formulation and process variables on particle size, zeta potential and liposome entrapment of insulin is reported. The ability to protect against lipolytic degradation and sustain insulin release in vitro in simulated GI conditions is also reported. Depending on the concentration and charge ratio of liposomes and silica nanoparticles, nanoparticle coated liposomes with varied size and zeta potential were obtained with an insulin entrapment efficiency of 70%. The silica nanoparticle coating protected liposomes against degradation by digestive enzymes in vitro; the release rate of insulin from silica coated liposomes was reduced in comparison to uncoated liposomes. Thus the liposomal release kinetics and stability can be controlled by including a specifically engineered nanoparticle layer. Silica nanoparticle–liposomes hybrid nanocapsules show promise as a delivery vehicle for proteins and peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.