Abstract

Hydrophobically modified silica aerogel nanoparticles (H-SiANp) were used for in situ polymerization of methyl methacrylate by reverse atom transfer radical polymerization to synthesize well-defined PMMA nanocomposites. Inherent characteristics of the prepared H-SiANp were evaluated by nitrogen adsorption/desorption isotherms, SEM, and TEM. Conversion and molecular weight determinations were carried out using GC and SEC, respectively. Addition of 3 mass% of the H-SiANp leads to decrement of conversion from 92 to 74%. Molecular weight of poly (methyl methacrylate) chains also decreases from 19,737 to 15,662 g mol−1 by addition of only 3 mass% H-SiANp; however, PDI values increase from 1.36 to 1.82. Linear increase of ln(M0/M) with time for all the samples shows that polymerization proceeds in a living manner. In addition, suitable agreement between theoretical and experimental molecular weight in combination with low PDI values can appropriately demonstrate the living nature of the polymerization. TG results indicate that by increasing H-SiANp content, improvements in thermal stability of the nanocomposites were obtained. DSC results show a decrease in glass transition temperature from 87.4 to 80.9 °C by addition of 3 mass% H-SiANp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call