Abstract
Epithelial-mesenchymal transition (EMT) is a crucial pathological process that contributes to proliferative vitreoretinopathy (PVR), and research indicates that factors present in the vitreous that target cells play pivotal roles in regulating EMT. Experimental studies have confirmed that rabbit vitreous (RV) promotes EMT in human retinal pigment epithelial (RPE) cells. The long noncoding RNA (lncRNA) MALAT1 has been implicated in EMT in various diseases. Thus, this study aimed to investigate the involvement of lncRNA MALAT1 in vitreous-induced EMT in RPE cells. MALAT1 was knocked down in ARPE-19 cells by short hairpin RNA (shRNA) transfection. Reverse transcription PCR (RT‒PCR) was used to evaluate MALAT1 expression, and Western blotting analysis was used to measure the expression of EMT-related proteins. Wound-healing, Transwell, and cell contraction assays were conducted to assess cell migration, invasion, and contraction, respectively. Additionally, cell proliferation was assessed using the CCK-8 assay, and cytoskeletal changes were examined by immunofluorescence. MALAT1 expression was significantly increased in ARPE-19 cells cultured with RV. Silencing MALAT1 effectively suppressed EMT and downregulated the associated factors snail1 and E-cadherin. Furthermore, silencing MALAT1 inhibited the RV-induced migration, invasion, proliferation, and contraction of ARPE-19 cells. Silencing MALAT1 also decreased RV-induced AKT and P53 phosphorylation. In conclusion, lncRNA MALAT1 participates in regulating vitreous-induced EMT in human RPE cells; these results provide new insight into the pathogenesis of PVR and offer a potential direction for the development of antiproliferative drugs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have