Abstract

Chemodynamic therapy (CDT) has been emerging as a promising strategy for cancer treatment. But the CDT efficiency is restricted by the insufficient intracellular hydrogen peroxide (H2O2) level. Herein, we present a method for H2O2 accumulation in tumor cells by silencing the catalase (CAT) gene with siRNA to achieve enhanced CDT. Cu-siRNA nanocomposites are fabricated by self-assembly of Cu2+ and CAT siRNA and then modified with hyaluronic acid (HA) for active tumor targeting. After tumor cell uptake, the released Cu2+ is reduced by highly expressed glutathione (GSH) to Cu+, which then catalyzes H2O2 to produce toxic hydroxyl radicals (•OH) to kill tumor cells. CAT siRNA can efficiently silence the CAT mRNA to inhibit the consumption of H2O2, resulting in H2O2 accumulation. The Cu2+-mediated GSH elimination and siRNA-induced endogenous H2O2 enrichment both potentiate CDT. Cu-siRNA@HA exhibits good biocompatibility and therapeutic efficiency. This work thus paves a new way to supply H2O2 in CDT and may hold potential for clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.