Abstract

Developing highly efficient chemodynamic therapy (CDT)-based theranostic technology for cancer treatment is highly desired but still challenging. A novel nanotheranostic platform is constructed for enhanced CDT by engineering hybrid CaO2 and Fe3O4 nanoparticles with a hyaluronate acid (HA) stabilizer and NIR fluorophore label. This design not only enables the nanotheranostic agent to afford highly efficient CDT against tumor cells but also confers NIR fluorescence (NIRF) and magnetic resonance (MR) bimodal imaging for in vivo visualization of CDT. Moreover, the use of the HA stabilizer allows for the facile synthesis of the nanotheranostic agent with excellent biocompatibility and active targetability. The nanotheranaostic agent possesses a high capacity of self-supplying H2O2 and producing •OH in acidic conditions, while retaining the desired stability under physiological conditions. It also demonstrates high selectivity to tumor cells via CDT with minimized toxicity to normal cells. In vivo studies reveal that our nanotheranaostic agent exhibits efficacious tumor growth inhibition via a CDT mechanism with favorable biosafety. Moreover, in vivo visualization of the CDT progress via NIRF and MR bimodal imaging demonstrates specific targeting and treatment of tumors. The developed H2O2 self-supplying, active targeting, and bimodal imaging nanotheranostic platform holds the potential as a highly efficient strategy for CDT of cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call