Abstract
BackgroundResistance development to paclitaxel (PTX) has become a major obstacle in the successful treatment of breast cancer (BC). Circular RNAs (circRNAs) have been identified as essential regulators in PTX resistance of BC. Here, we explored the precise roles of circRNA homeodomain interacting protein kinase 3 (circHIPK3, circ_0000284) in PTX resistance of BC.MethodsThe expression levels of circHIPK3, microRNA (miR)-1286, and hexokinase 2 (HK2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Ribonuclease R (RNase R) assay was used to confirm the stability of circHIPK3. Cellular localization of circHIPK3 was assessed by subcellular localization assay. The half maximal inhibitory concentration (IC50) value for PTX was measured by Cell Counting Kit-8 (CCK-8) assay. Cell colony formation, cell cycle distribution, and apoptosis were gauged by colony formation assay and flow cytometry, respectively. Animal studies were performed to evaluate the role of circHIPK3 in vivo. The direct relationship between miR-1286 and circHIPK3 or HK2 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays.ResultsOur results showed that circHIPK3 was up-regulated in PTX-resistant BC tissues and cells compared with the sensitive counterparts. The silencing of circHIPK3 promoted PTX sensitivity of PTX-resistant BC cells in vitro and in vivo. CircHIPK3 directly targeted miR-1286, and miR-1286 acted as a downstream mediator of circHIPK3 function in vitro. HK2 was a direct target of miR-1286, and circHIPK3 modulated HK2 expression through miR-1286. The increased expression of miR-1286 sensitized PTX-resistant BC cells to PTX in vitro by down-regulating HK2.ConclusionOur findings demonstrated that the silencing of circHIPK3 sensitized PTX-resistant BC cells to PTX therapy at least in part via the regulation of the miR-1286/HK2 axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.