Abstract
Mitofusin-2 (MFN2) is a mitochondrial membrane protein that plays a critical role in regulating mitochondrial fusion and cellular metabolism. To further elucidate the impact of MFN2, this study aimed to investigate its significance on hepatocellular carcinoma (HCC) cell function and its potential role in mediating chemosensitivity. This study investigated the effects of silencing and overexpressing MFN2 on the survival, proliferation, invasion and migration abilities, and sorafenib resistance of MHCC97-L HCC cells. Additional experiments were conducted using XAV939 (a β-catenin inhibitor) and HLY78 (a β-catenin activator) to further validate these findings. Silencing MFN2 significantly promoted the survival and proliferation of MHCC97-L cells, enhanced their invasion and migration capacities, increased the IC50 of sorafenib, reduced the percentage of TUNEL-positive cells, and decreased the expression of proapoptotic proteins. Additionally, silencing MFN2 markedly induced the nuclear translocation of β-catenin, increased β-catenin acetylation levels and enhanced the expression of the downstream regulatory proteins Snail1 and Vimentin while inhibiting E-cadherin expression. Conversely, overexpressing MFN2 reversed the effects observed in MHCC97-L cells mentioned above. The results confirmed that silencing MFN2 activated the β-catenin/epithelial-mesenchymal transition (EMT) pathway and reduced the sensitivity of cells to sorafenib, which could be reversed by XAV939 treatment. Conversely, overexpression of MFN2 inhibited the β-catenin/EMT pathway and increased the sensitivity of cells to sorafenib, which could be altered by HLY78. Low expression of MFN2 in HCC cells promotes the nuclear translocation of β-catenin, thereby activating the EMT pathway and mediating resistance to sorafenib.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.