Abstract

This study explored the clinical value of long non-coding RNA small nucleolar RNA host gene 14 (SNHG14) in diabetic kidney disease (DKD) and the mechanism of renal tubular injury. Patients with DKD, type 2 diabetes mellitus (T2DM) and healthy individuals (HVs) were included, as well as the human proximal tubular epithelial cell line (HK-2) induced by high glucose was also included. The mRNA levels of SNHG14 in the serum and cells were detected using RT-qPCR. Diagnostic significance was examined using receiver operating characteristic (ROC) analysis. A commercial test kit, flow cytometry, and enzyme-linked immunosorbent assays were employed to assess reactive oxygen species (ROS) production, apoptosis, inflammatory factor secretion, and extracellular matrix protein levels in HK-2 cells. The dual-luciferase reporter assay and RNA immunoprecipitation were used to validate miR-483-5p concerning SNHG14 or histone deacetylase 4 (HDAC4). SNHG14 and HDAC4 levels were elevated in the serum of DKD patients and HG-induced HK-2 cells, while miR-483-5p levels were decreased (P < 0.001). SNHG14 increased HDAC4 levels by sponging miR-483-5p. Elevated SNHG14 levels significantly differentiated DKD patients from HVs (AUC = 0.944) and T2DM (AUC = 0.867). Silencing of SNHG14 alleviated HG-induced ROS production and apoptosis as well as the over-secretion of inflammatory factors and extracellular matrix proteins; however, this alleviation was typically suppressed by low expression of miR-483-5p (P < 0.001). Elevated miR-483-5p alleviates HG-induced renal tubular injury, but this alleviation is suppressed by HDAC4 overexpression. In summary, suppression of SNHG14 has been shown in our study to mitigate renal tubular injury in DKD by regulating apoptosis, oxidative stress, inflammation, and fibrosis through the miR-483-5p/HDAC4 axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.