Abstract
Long non-coding RNA rhabdomyosarcoma 2-associated transcript (RMST) has been found to exert effects on cardiovascular diseases. However, the research for probing its role in heart failure (HF) is limited. Our study intends to unravel the regulatory effects of RMST on HF via the microRNA (miR)-10b-5p/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis. The mouse model of HF was induced by doxorubicin. The expression levels of RMST, miR-10b-5p and TRAF6 were detected. The virus carrying RMST, miR-10b-5p or TRAF6 vectors were injected into doxorubicin-induced HF mice to examine the cardiac function, inflammatory response, pathological changes and cell apoptosis in doxorubicin-induced HF mice. The target relationships among RMST, miR-10b-5p and TRAF6 were confirmed. RMST and TRAF6 were elevated and miR-10b-5p was reduced in doxorubicin-induced HF mice. RMST or TRAF6 silencing or miR-10b-5p overexpression could improve doxorubicin-induced cardiac dysfunction, and inflammatory response, and reduce cardiomyocyte apoptosis. Down-regulation of miR-10b-5p or overexpression of TRAF6 were both able to inverse the therapeutic effect of silencing RMST on doxorubicin-induced HF mice. RMST bound to miR-10b-5p that targeted TRAF6. RMST silencing could attenuate inflammatory response and cardiomyocyte apoptosis and upregulate cardiac function in mice with doxorubicin-induced HF by modulating the miR-10b-5p/TRAF6 axis. The study provides novel therapeutic targets for HF treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have