Abstract

Objectives Diabetic neuropathy (DN) induces lifetime disability and there is currently no effective therapy to treat or to minimize patients suffering, so it is thereby imperative to develop therapeutic strategies for this disease. Since oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation are crucial mechanisms in development and progression of DN, it is important to explore tools by which one can reduce factors related to these pathways. Herein, the understandings of the sildenafil neuroprotective effect through increase of cGMP level and the mediation of oxidative stress, apoptosis, and inflammation pathways on neurotoxicity induced by high glucose (HG) in PC12 cells as an in vitro cellular model for DN were investigated.Methods We reported that the PC12 cells pre-treatment with sildenafil (0.008 μM) for 60 min and then exposing the cells to HG (25 mM for 72 h) or normal glucose (NG) (5 mM for 72 h) condition, show:Results (1) significant attenuation in reactive oxygen species, MDA and TNF-a levels, Bax/Bcl-2 ratio, expression of caspase 3 and UCP2 proteins; (2) significant increase in viability, GSH/GSSG ratio, mitochondrial membrane potential, and ATP levels.Conclusion All these data together led us to propose neuroprotective effect of sildenafil is probably through its antioxidant, antiapoptotic, and anti-inflammatory activities. Of course, further studies are required to explain the underlying mechanism of the sildenafil effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call