Abstract
ABSTRACT Objectives This study aims to investigate the role of high-intensity interval training (HIIT) in promoting myelin sheath recovery during the remyelination phase in cuprizone (CPZ)-induced demyelination mice and elucidate the mechanisms involving the Wnt/β-catenin pathway. Methods After 5 weeks of a 0.2% CPZ diet to induce demyelination, a 4-week recovery phase with a normal diet was followed by HIIT intervention. Mice body weight was monitored. Morris water maze (MWM) gauged spatial cognition and memory, while the open field test (OFT) assessed anxiety levels. Luxol fast blue (LFB) staining measured demyelination, and immunofluorescence examined myelin basic protein (MBP) and platelet-derived growth factor receptor-alpha (PDGFR-α). Western blotting analyzed protein expression, including MBP, PDGFR-α, glycogen synthase kinase-3β (GSK3β), β-catenin, and p-β-catenin. Real-time PCR detected mRNA expression levels of CGT and CST. Results HIIT promoted remyelination in demyelinating mice, enhancing spatial cognition, memory, and reducing anxiety. LFB staining indicated decreased demyelination in HIIT-treated mice. Immunofluorescence demonstrated increased MBP fluorescence intensity and PDGFR-α+ cell numbers with HIIT. Western blotting revealed HIIT reduced β-catenin levels while increasing p-β-catenin and GSK3β levels. Real-time PCR demonstrated that HIIT promoted the generation of new myelin sheaths. Additionally, the Wnt/β-catenin pathway agonist, SKL2001, decreased MBP expression but increased PDGFR-α expression. Discussion HIIT promotes remyelination by inhibiting the Wnt/β-catenin pathway and is a promising rehabilitation training for demyelinating diseases. It provides a new theoretical basis for clinical rehabilitation and care programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.