Abstract

It is well established that the pathogenesis of diabetic nephropathy is associated with abnormalities of renal nitric oxide (NO) generation. Many of the biological actions of NO are mediated by cGMP, which is rapidly degraded by phosphodiesterases. In this study, we evaluated the renoprotective effects of sildenafil (SIL), an inhibitor of phosphodiesterase-5, in type 2 diabetic rats. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a non-insulin-dependent diabetes model, and Long-Evans Tokushima Otsuka rats, a non-diabetic control, were treated with either SIL (2.5 mg·kg(-1) in drinking water) or undosed water for 28 weeks, starting at 30 weeks of age. Sildenafil treatment significantly decreased albuminuria, attenuated glomerular hyperfiltration and resulted in a decrease in glomerular hypertrophy, in addition to a reduced glomerulosclerosis score and a dramatic decrease in the number of glomerular and tubulointerstitial proliferating cell nuclear antigen-positive cells in OLETF rats. This was accompanied by a significant reduction in renal cortical mRNA levels of collagen types I and III. The increased mRNA levels of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitors of MMPs (TIMP)-1 and TIMP-2 in the OLETF rats were significantly or partially attenuated by SIL treatment. This study suggests that SIL attenuated diabetic nephropathy due to its potent antiproliferative effects and its regulatory effects on extracellular matrix. This latter effect is thought to be a result of its ability to affect the balance between MMPs and their inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.