Abstract

Using solar energy to drive catalytic conversion of CO2 into value-added chemicals has great potential to alleviate the global energy shortage and anthropogenic climate change. Herein, a “hitting three birds with one stone” strategy was reported to prepared boron-doped g-C3N4/TiO2-x composite (BCT) by a one-step thermal reduction process. A series of characterizations showed that the composite catalyst has extended full-spectrum absorption, rapid photogenerated charge separation, and outstanding CO2 photoreduction performance (265.2 μmol g-1h−1), which is 7.5 and 9.2 times higher than that of pure TiO2 and g-C3N4, respectively. In addition, the CO2 conversion rate can be further increased to 345.1 μmol g-1h−1 at 70 °C due to its excellent photothermal conversion. Mechanistic studies reveal that synergistic effects alter the charge density distribution, thereby lowering the energy barrier for CO2 conversion by adsorbing and activating CO2 molecules. This work provides a novel three-in-one integrated strategy for fabricating high-efficiency catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.