Abstract

Neural stem cells are emerging as a regenerative therapy for spinal cord injury (SCI), since they differentiate into functional neural cells and secrete beneficial paracrine factors into the damaged microenvironment. Previously, we successfully isolated and cultured adult human multipotent neural cells (ahMNCs) from the temporal lobes of epileptic patients. In this study, we investigated the therapeutic efficacy and treatment mechanism of ahMNCs for SCI using rodent models. When 1 × 106 ahMNCs were transplanted into injured spinal cords at 7 days after contusion, the injection group showed significantly better functional recovery than the control group (media injection after contusion), which was determined by the Basso, Beattie and Bresnahan (BBB) score. Although transplanted ahMNCs disappeared continuously, remained cells expressed differentiated neural cell markers (Tuj1) or astrocyte marker (GFAP) in the injured spinal cords. Moreover, the number of CD31-positive microvessels significantly increased in the injection group than that of the control group. The paracrine pro-angiogenic activities of ahMNCs were confirmed by in vitro tube formation assay and in vivo Matrigel plug assay. Together, these results indicate that ahMNCs have significant therapeutic efficacy in SCI via replacement of damaged neural cells and pro-angiogenic effects on the microenvironment of SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.