Abstract

We investigated functional recovery of the lower urinary system in rats with spinal cord injury after transplanting neuronal restricted precursors/glial restricted precursors or neural cells derived from bone marrow stromal cells into the injured area of the spinal cord. A total of 30 rats underwent experimentation in 4 groups, including group 1--sham operation, group 2--spinal cord injury plus neuronal restricted precursor/glial restricted precursor transplantation, group 3--spinal cord injury plus bone marrow stromal cell transplantation and group 4--spinal cord injury control. All rats in the 4 groups were investigated urodynamically and sacrificed on day 28 after transplantation. The cells transplanted into the injured spinal cord underwent histological investigation. Transplanted cells (neuronal and glial restricted precursors, and bone marrow stromal cells) were found to maintain a presence in the injured spinal cord area. Baseline pressure, maximum capacity, mean uninhibited contraction amplitude, mean voiding pressure, voided volume and post-void residual volume were significantly better in groups 2 and 3 than in group 4, while baseline pressure in group 2 was better than that in group 3. We found no significant difference among the groups according to mean uninhibited contraction frequency. Although neuronal/glial restricted precursor transplanted rats seemed to have more improvement, all rats in groups 2 and 3 showed some significant improvement in lower urinary system function. On the other hand, the level of this improvement was far from complete functional recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call