Abstract
Zinc-ion hybrid supercapacitors (ZIHSCs) represents a promising technological approach for large-scale energy storage with the combined advantages of supercapacitors and zinc-ion batteries. Unfortunately, it is still challengeable to quickly fabricate low-cost, high-performance carbonaceous cathode materials at relatively low temperature. To address such issues, herein, taking waste Eucommia ulmoides Oliver (EUO) wood as an example, we present a novel microwave-assisted carbonization (MWC) approach at relatively low temperature to quickly prepare active carbon, and we present a synergistic strategy to significantly enhance the electrochemical performance by introducing sodium bicarbonate activation (SA) and constructing conductive carbon nanotubes (CNT) networks. The MWC-SA@CNT hybrid exhibits outstanding specific capacitance of 344.2 F/g at 0.2 A/g within three-electrode system, much better than conventional high-temperature pyrolyzed AC, MWC carbon, and MWC-SA carbon. The superior performance of MWC-SA@CNT can be attributed to the synergistic effect of its large specific surface area of 1102.7 m2/g, high mesoporous percentage of 53.5%, and rich –OH and CO groups due to microwave-assisted carbonization and sodium bicarbonate activation, and rich electron transport paths due to the presence of CNT networks. Furthermore, ZIHSCs assembled by MWC-SA@CNT cathode could delivers impressive performance with excellent capacity (194.37 mA h/g at current density of 1 A/g), energy density (142.30 Wh/kg), and durability (capacitance retention rate of 97.65% after 5000 cycles). This work offers a rapid and low-temperature method for preparing wood-based active carbon with rich nanopores and strong conductivity to improve performance of Zinc ion storage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have