Abstract

Due to the full compatibility with modern complementary-metal-oxidesemiconductor (CMOS) technology and scalable capability, HfO2-based ferroelectric films have been considered as the most potential materials in micro-nano non-volatile memories. However, despite great achievements, the existence of poor interface still poses a great threat to the improve of ferroelectricity and polarization stability. Here, the excellent ferroelectricity and reliability in the 21.6 nm-thick Hf0.5Zr0.5O2 (HZO) films are reported through interface modification by inserting an ultrathin Al2O3 (AO) layer using atomic layer deposition method. Improved polarization and stability are achieved in HZO/AO bilayers with the AO thickness below 2.4 nm. When the thickness of AO dielectric layer is 1.6 nm, the maximum remnant polarization reaches 30.19 μC/cm2 and the leakage current is decreased by 2 ~ 3 orders of magnitude. The strong interface polarization resulted from the electrostatic coupling between HZO and AO films contributes to the improved ferroelectricity of HZO films. Furthermore, the AO layer, as a dielectric capacitor after switching or during non-switching, can block the electron injection from bottom electrode and therefore improve the cycling reliability. This work demonstrates that an inlaid dielectric layer with much lower dielectric constant can significantly enhance the electrical properties of ferroelectric films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call