Abstract
AbstractIn many studies, the properties of BiFeO3–BaTiO3 (BF–BT) ceramics vary greatly using different raw reagents, which makes it challenging to obtain reliable and repeatable properties of BF–BT‐based devices. In this work, 0.7BiFeO3–0.3BaTiO3 (0.7BF–0.3BT) ceramics were fabricated by a conventional solid‐phase synthesis using TiO2 reagents with varied purities of 98%, 99%, 99.9%, and 99.99%, respectively. The phase structure, microstructure, ferroelectric, and piezoelectric properties were comprehensively studied. All compositions of the ceramics exhibit a pseudo‐cubic phase perovskite structure, and the fraction of the rhombohedral phase increases with increasing the TiO2 purity. Additionally, backscattered electron images and energy‐dispersive spectroscopy revealed an obvious core–shell structure within grains. In particular, the 0.7BF–0.3BT ceramics prepared with 98% purity TiO2 exhibited superior ferroelectric and piezoelectric properties, d33 ∼ 220 pC/N and ∼ 230 pm/V. The ceramics prepared with higher purity TiO2 suffered from severe leakage conduction, which can be well addressed by adding excess TiO2. Our work reveals the importance of different grades of purity TiO2 on the electrical properties of BF–BT ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.