Abstract

Abstract The near-field radiative heat transfer of heterostructure consisting of SiC gratings and graphene is investigated in this work. The rigorous coupled-wave analysis is employed to calculate the spectral heat flux. Nevertheless, monolayer heterostructure and nonmisaligned bilayer heterostructure consistently suffer from a lack of spectral heat flux. In this work, we investigate the prominent effect of misaligned bilayer heterostructure in enhancing near-field radiative heat transfer by plotting energy transmission coefficients and electromagnetic fields. The results show that when the misalignment reaches half a period, the bilayer heterostructure exhibits optimal performance with a total heat flux of 3.5 × 104 W/m2. Besides the well-known coupled surface phonon polaritons supported by SiC gratings, the surface plasmon polaritons supported by graphene dominate the enhancement of heat flux from 0.01 × 1014 rad/s to 1.5 × 1014 rad/s. Due to the spatial misalignment of the upper and lower gratings, the lower layer graphene surface plasmon polaritons are intensified, compensating for the lack of spectral heat flux. Meanwhile, the graphene surface plasmon polaritons and SiC surface phonon polaritons can be hybridized to form surface plasmon-phonon polaritons. In addition, the dynamic modulation of near-field radiative heat transfer in the misalignment state is achieved by manipulating the Fermi level of graphene. We finally show that the superiority of misaligned heterostructure is robust with respect to the frequency shift in the phonon band, providing an effective way to improve the near-field radiative heat transfer in different configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call