Abstract

Spatial distance is an important factor in controlling the functional interactions between molecular units in a conjugate; therefore, the bridging unit has been closely examined. Here, we examined the effect of the flexibility of bridging alkyl chains on the proximity of stacked porphyrin and phthalocyanine conjugated with a fourfold rotaxane linkage. We found that closely stacking two π systems requires bridging alkyl chains above a certain length, and the shorter bridges hinder stacking because of their lower flexibility. The stacking distance between porphyrin and phthalocyanine in the conjugate with decyl (C10 ) chains was estimated to be 4.03 Å and showed a unique physical character arising from short-distance interactions. The longer alkyl chains minimized steric restriction inside the fourfold rotaxane and allowed efficient communication between the porphyrin and phthalocyanine units. This is due to the flexibility of the side chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.