Abstract

In this paper, the significance of xylan on the behaviour of kraft birch pulp based nanofibrillated cellulose (CNF) is discussed. The influence of CNF xylan content on fibril morphology, charge and stability as well as on the film formation ability was investigated, and the features detected on nanoscale and on macroscale are compared. In addition to this, the ability of fibrils to uptake water molecules were investigated by bulk and surface sensitive methods which are dynamic water sorption analysis (DVS) and quartz crystal microbalance with dissipation monitoring (QCM-D) equipped with the humidity module, respectively. Surface xylan plays a significant role as an electrosteric stabilizer in dilute CNF dispersions when the surface forces are dominant whereas the removal of xylan drastically changes the CNF dispersion properties. The settling of the unstable CNF dispersions displays behaviour which is typical for hindered sedimentation. When considering thin nanoscale layers of CNF, nanofibrillated cellulosic materials with high content of surface xylan has somewhat higher ability to bind water molecules. However, it seems that in more concentrated CNF dispersions where the fibrillar network itself plays also a decisive role, especially with respect to film formation ability, the impact of xylan diminishes. Solvent cast macroscale CNF films are still enough dense to maintain good oxygen barrier performance at higher humid conditions although agglomeration tendency of fibrils is higher due to the excessive xylan removal. These findings are of high relevance when considering nanocellulosic materials, especially in the form of gels and films, as templates for high added value material solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.