Abstract
AbstractThe significance of the apple blossom weevil, Anthonomus pomorum L. (Coleoptera: Curculionidae), as a potential threat to apple, Malus domestica Borkh., has increased over the past two decades in many regions of Europe. The apple blossom weevil immigrates into orchards and colonises apple trees in early spring. Females deposit single eggs into closed blossom buds, which leads to capped blossoms. This study was designed to test the suitability of transparent shelter traps for the surveillance of colonisation under different population pressures, and to assess the quantitative relationship between number of weevils caught and: (1) absolute injury, expressed as number of infested buds, as well as (2) relative injury, expressed as a percentage of infested buds relative to all buds on the tree. The findings with the new shelter traps were contrasted to results from limb jarring. Numbers of weevils caught with the transparent shelter trap were positively correlated with absolute injury, as well as with relative injury across the five study sites, whereas weevil counts with limb jarring were not correlated with absolute injury, but only with relative injury. Our data validate the transparent shelter trap as a method for accurately monitoring the course of spring colonisation of A. pomorum and demonstrate its potential for predicting injury by the weevils to blossom buds. In contrast, the significance of limb jarring for monitoring both the time course of colonisation and subsequent injury is limited. The significant linear relationship between the number of weevils caught in shelter traps and the relative injury allows for predictions of potential damage before oviposition takes place, i.e., early enough for an insecticide application where necessary.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have