Abstract

Climate change is a major threat to biodiversity, causing species to move to new climatically suitable areas, and thus increasing the extinction probability of species inhabiting fragmented landscapes. This highlights the need for climate-wise conservation strategies. With such strategies, a well-connected network of protected areas (PAs) is one of the most important means to support species survival. An extensive and representative PA network can enhance the resilience of regional populations of species, resulting in slower species loss in landscapes with a significant proportion of area of habitat being protected. This paper presents analyses of both the observed (1974–2010) and the predicted changes (by 2051–2080) in boreal bird populations in Finland. Firstly, the results show some general patterns of climate change on bird species: (1) species are shifting their ranges towards north, (2) range sizes of many species are declining, and (3) these changes are different in northern and southern species and in species occupying different habitats. Secondly, the paper looks more into the role of protected area (PA) network in securing birds in a changing climate and concludes that at least in Finland, open habitats, such as open mires and mountain heaths, change more rapidly in their species composition in protected areas than for example old-growth forests. However, generally, species decline less within than outside PAs showing that protected areas alleviate climate change effects on bird species of conservation concern. This finding, further supported by results from elsewhere in Europe, provides evidence for the resilience of PA networks in preserving species under climate change. Representative PA network that includes high cover for key habitats is hence needed in all latitudinal zones. The projected efficiency of the PA network in maintaining biodiversity was partly dependent on the strength of climate change varying with respect to future scenarios. This suggests that a flexibly adaptive climate-wise conservation planning is required to be better prepared for preserving biodiversity in the face of uncertain climate change. Thirdly, the paper discusses several aspects of climate change studies and avian biodiversity that have been hitherto understudied especially in the northern biomes. The paper suggests that future studies should concentrate on (1) abundance-based models and prioritisations, (2) species’ adaptive capacity (ability to avoid the impacts of climate change through dispersal and/or evolutionary change) and sensitivity (limited potential to persist in situ under changing climate) to climate change, (3) the role of the landscape matrix around the PAs and (4) the effects of the biogeophysical features of the PAs themselves. In conclusion, we envision that improved assessments regarding the ability of PA networks to maintain biodiversity in northern biomes are needed to enhance our ability to perform climate-wise conservation planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.